Inova Fairfax Hospital South Patient Tower

Falls Church, VA

Senior Thesis 2012

Faculty Advisor: Dr. Richard Behr

Nathan McGraw | Structural Option

Building Introduction

- □ Hospital/Patient Tower
- □ Located in Falls Church, VA
- □ Height 145' to Main Roof Level
- □ Construction Cost \$76 Million
- □ Summer 2010 Fall 2012
- □ LEED Silver Certification

Site Map

Building Introduction	Owner:
Existing Structural System	General
Problem Statement	
Proposed Solution	Architect
Gravity Redesign	Structura
Fixed Base System	
Base Isolation System	MEP: RM
Comparison of Designs	Civil Eng
Construction Management Breadth	
Questions/Comments	

Project Team

- Inova Fairfax Hospital
- **Contractor:** Turner Construction
- **t/Planner:** Wilmot/Sanz Architects
- al Engineer: Cagley & Associates
- MF Engineering, INC.
- gineer: Dewberry & Davis LLC

Introduction

Building Introduction	Addition
Existing Structural System	Designed
Problem Statement	Once cor
Proposed Solution	
Gravity Redesign	Hospital
Fixed Base System	Design H
Base Isolation System	□ 174 a
Comparison of Designs	n Media
Construction Management Breadth	
Questions/Comments	□ Three

Design Highlights

- n to existing hospital (not depicted in picture)
- d to maintain floor-to-floor relationships
- mpleted, construction of the Women's
- will be undertaken
- Highlights:
- all-intensive patient rooms
- ical/surgical beds situated on five floors
- e floors dedicated to ICU beds

Introduction

Building Introduction

Existing Structural System

- Problem Statement
- Proposed Solution
- **Gravity Redesign**
- □ Fixed Base System
- **Base Isolation System**
- **Comparison of Designs**
- **Construction Management Breadth**
- Questions/Comments

Foundat

Floor System

□ Lateral System

Existing Structural System

•
llon

Foundation

Existing Structural System

Foundation

- Net allowable bearing pressure of 3000 psf.
- \Box Equivalent fluid pressure = 60 psf/ft
- □ Friction factor of 0.30
- □ 16 in. diameter auger-cast piles and pile caps
- \Box 5 in. slab on grade

Existing Structural System

Foundation

- □ Net allowable bearing pressure of 3000 psf
- \Box Equivalent fluid pressure = 60 psf/ft
- □ Friction factor of 0.30
- □ 16 in. diameter auger-cast piles and pile caps
- \Box 5 in. slab on grade

□ Existing Structural System

- **Problem Statement**
- Proposed Solution
- **Gravity Redesign**
- □ **Fixed Base System**
- Base Isolation System
- **Comparison of Designs**
- **Construction Management Breadth**
- **Questions/Comments**

□ Foundation

□ Floor System

- □ Typical bay size: 29 ft x 29 ft
- 9.5 in. two-way flat slab concrete system with 15.5 in. drop panels
- \Box Typical column: 24 in. x 24 in.
- □ Lateral System

Existing Structural System

Floor Plans

Ground Floor

□ Existing Structural System

- Problem Statement
- Proposed Solution
- **Gravity Redesign**
- □ **Fixed Base System**
- Base Isolation System
- **Comparison of Designs**
- **Construction Management Breadth**
- **Questions/Comments**

□ Foundation

□ Floor System

- □ Typical bay size: 29 ft x 29 ft
- 9.5 in. two-way flat slab concrete system with 15.5 in. drop panels
- \Box Typical column: 24 in. x 24 in.
- □ Lateral System

Existing Structural System

Floor Plans

1st Floor

Existing Structural System

- **Problem Statement**
- Proposed Solution
- **Gravity Redesign**
- □ **Fixed Base System**
- **Base Isolation System**
- **Comparison of Designs**
- **Construction Management Breadth**
- **Questions/Comments**

□ Foundation

□ Floor System

- □ Typical bay size: 29 ft x 29 ft
- 9.5 in. two-way flat slab concrete system with 15.5 in. drop panels
- \Box Typical column: 24 in. x 24 in.
- □ Lateral System

Existing Structural System

Floor Plans

2nd Floor

Existing Structural System

- **Problem Statement**
- Proposed Solution
- **Gravity Redesign**
- □ **Fixed Base System**
- Base Isolation System
- **Comparison of Designs**
- **Construction Management Breadth**
- **Questions/Comments**

□ Foundation

□ Floor System

- □ Typical bay size: 29 ft x 29 ft
- 9.5 in. two-way flat slab concrete system with 15.5 in. drop panels
- \Box Typical column: 24 in. x 24 in.
- □ Lateral System

Existing Structural System

Floor Plans

3rd Floor

Existing Structural System

- **Problem Statement**
- Proposed Solution
- **Gravity Redesign**
- □ **Fixed Base System**
- **Base Isolation System**
- **Comparison of Designs**
- **Construction Management Breadth**
- **Questions/Comments**

□ Foundation

□ Floor System

- □ Typical bay size: 29 ft x 29 ft
- 9.5 in. two-way flat slab concrete system with 15.5 in. drop panels
- \Box Typical column: 24 in. x 24 in.
- □ Lateral System

Existing Structural System

Floor Plans

4th – 11th Floors

Existing Structural System

- **Problem Statement**
- Proposed Solution
- **Gravity Redesign**
- □ **Fixed Base System**
- Base Isolation System
- **Comparison of Designs**
- **Construction Management Breadth**
- Questions/Comments

□ Foundation

- □ Floor System
- Lateral System
 - □ 7 shear walls located around elevator/staircase
 - cores
 - □ Scattered moment frames situated mainly in the Y-Direction

Existing Structural System

Problem Statement

- □ Interest in seismic design
- New scenario created
 - Building commissioned by the University of California – Davis (near Sacramento, CA)
- "Hospital buildings that house patients who have less than the capacity of normally healthy persons to protect themselves...must be reasonably capable of providing services to the public after a disaster." - Alfred E. Alquist Hospital Facilities Seismic Safety Act

California Site

Building Introduction	3 (design
Existing Structural System		
Problem Statement		□ Ba
Proposed Solution		
Gravity Redesign		Imme
Fixed Base System		🗆 Tra
Base Isolation System		
Comparison of Designs		Imm
Construction Management Breadth		
Questions/Comments		M

Problem Solution

- s undertaken in concrete
- Way Slab Floor System in VA ise Model

ediate Occupancy Design in California aditional Fixed Base System (CA – Fixed Model)

ediate Occupancy Design in California Igmented with Base Isolators (CA – Base Isolation odel)

- Comparison between the various designs includes:
 - □ Existing Structure vs. CA Fixed Model

□ Existing Structure vs. CA – Base Isolation Model

- □ CA Fixed Model vs. CA Base Isolation Model (Traditional system vs. High Seismic Performance System)
- Utilize MAE coursework to accomplish the above tasks

Goals

- **Building Introduction**
- **Existing Structural System**
- **Problem Statement**
- **Proposed Solution**
- □ Gravity Redesign
- □ **Fixed Base System**
- **Base Isolation System**
- **Comparison of Designs**
- **Construction Management Breadth**
- **Questions/Comments**

System Alterations

Proposed One-Way Layout

- □ Addition of shear wall in northern core
- □ Addition of two columns

Moment frames situated along the existing column lines and in the X-Direction

- **Building Introduction**
- **Existing Structural System**
- **Problem Statement**
- **Proposed Solution**

Gravity Redesign

- □ Fixed Base System
- Base Isolation System
- Comparison of Designs
- **Construction Management Breadth**
- Questions/Comments

One-Way Slab Design

-							
		Designed One-Way Floor Slab System					
	Member	Dimensions	Location	Reinfocement			
	Slah	۲"	Top/Bottom	#4@12"			
4	Siab	J	Transverse	#4@18"			
		12"x24"	At Support (top)	(4) # 6's			
	Joist		At Midspan (bottom)	(3) # 6's			
			At Support (top)	(4) # 6's			
			At Support (top)	(5) # 9's			
	Girder	24"x24"	At Midspan (bottom)	(4) # 8's			
			At Support (top)	(5) # 9's			

- **Building Introduction**
- **Existing Structural System**
- **Problem Statement**
- **Proposed Solution**

Gravity Redesign

- □ Fixed Base System
- Base Isolation System
- **Comparison of Designs**
- **Construction Management Breadth**
- Questions/Comments

One-Way Slab Design

	÷								
		Designed One-Way Floor Slab System							
		Member	Dimensions	Location	Reinfocement				
4		Clab	۲"	Top/Bottom	#4@12"				
		5100	J	Transverse	#4@18"				
	-	Joist	12"x24"	At Support (top)	(4) # 6's				
				At Midspan (bottom)	(3) #6's				
				At Support (top)	(4) # 6's				
				At Support (top)	(5) # 9's				
		Girder	24"x24"	At Midspan (bottom)	(4) # 8's				
0				At Support (top)	(5) # 9's				

□ ASCE 41-06 – Seismic Rehabilitation of Existing Building Introduction Buildings **Existing Structural System** Problem Statement □ S-3: "Life Safety" Proposed Solution **Gravity Redesign** Concrete Frames – 2% Transient Drift Concrete Walls – 1% Transient Drift □ Fixed Base System □ S-1: "Immediate Occupancy" Base Isolation System Comparison of Designs Concrete Frames – 1% Transient Drift **Construction Management Breadth** Concrete Walls – 0.5% Transient Drift Questions/Comments

Fixed Base System

Table C1-3	Structural Perform	mance Levels and Damage	e ^{1, 2, 3} —Vertical Elements	s (continued)			
		Structural Performance Levels					
Elements	Туре	Collapse Prevention S-5	Life Safety S-3	Immediate Occupancy S-1			
Concrete Walls	Primary	Major flexural and shear cracks and voids. Sliding at joints. Extensive crushing and buckling of reinforcement. Failure around openings. Severe boundary element damage. Coupling beams shattered and virtually disintegrated.	Some boundary element stress, including limited buckling of reinforcement. Some sliding at joints. Damage around openings. Some crushing and flexural cracking. Coupling beams: extensive shear and flexural cracks; some crushing, but concrete generally remains in place.	Minor hairline cracking of walls, <1/16" wide. Coupling beams experience cracking <1/8" width.			
	Secondary	Panels shattered and virtually disintegrated.	Major flexural and shear cracks. Sliding at joints. Extensive crushing. Failure around openings. Severe boundary element damage. Coupling beams shattered and virtually disintegrated.	Minor hairline cracking of walls. Some evidence of sliding at construction joints. Coupling beams experience cracks <1/8" width. Minor spalling.			
	Drift	2% transient or permanent	1% transient; 0.5% permanent	0.5% transient; negligible permanent			

Building Introduction	□ ASCE 7-0
Existing Structural System	Other St.
Problem Statement	
Proposed Solution	1.4(<i>D</i> -
Gravity Redesign	1.2(<i>D</i> -
Fixed Base System	1.2 <i>D</i> +
Base Isolation System	1.2 <i>D</i> +
Comparison of Designs	1.2D +
Construction Management Breadth	0.9D +
Questions/Comments	0.9 <i>D</i> +

Fixed Base System

Lateral System Design

05: Minimum Design Loads for Buildings and tructures

+F)

- +F+T) + 1.6(L + H) + 0.5(L_r or S or R)
- $-1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.8W)$
- $-1.6W + L + 0.5(L_r \text{ or } S \text{ or } R)$
- -1.0E + L + 0.2S
- -1.6W + 1.6H
- -1.0E + 1.6H

	Base Shear Values					
	Direction	Existing Structure (VA)	CA - Fixed Model			
ind	N-S	391 k	322 k			
Ň	E-W	1028 k	666 k			
mic	N-S	747 k	2026 k*			
Seis	E-W	747 k	2026 k*			
*Modal Response Spectrum Analysis Performed (85% Controlled)						

ELF = 2384 k

Building Introduction	□ ASCE 7-0
Existing Structural System	Other St
Problem Statement	1 4 (D
Proposed Solution	1.4(<i>D</i> -
Gravity Redesign	1.2(D -
Fixed Base System	1.2 <i>D</i> +
Base Isolation System	1.2D +
Comparison of Designs	1 .2 <i>D</i> -
Construction Management Breadth	0.9D +
Questions/Comments	0.9 <i>D</i> +

Fixed Base System

Lateral System Design

05: Minimum Design Loads for Buildings and tructures

+F)

- +F+T) + 1.6(L + H) + 0.5(L_r or S or R)
- $-1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.8W)$
- $-1.6W + L + 0.5(L_r \text{ or } S \text{ or } R)$
- + 1.0E + L + 0.2S
- -1.6W + 1.6H
- 1.0E + 1.6H

	Base Shear Values					
	Direction	Existing Structure (VA)	CA - Fixed Model			
ind	N-S	391 k	322 k			
M	E-W	1028 k	666 k			
mic	N-S	747 k	2026 k*			
Seis	E-W	747 k	2026 k*			
*Modal Re	*Modal Response Spectrum Analysis Performed (85% Controlled)					

ELF = 2384 k

- Building Introduction
- **Existing Structural System**
- Problem Statement
- **Proposed Solution**
- **Gravity Redesign**
- □ Fixed Base System
- Base Isolation System
- **Comparison of Designs**
- **Construction Management Breadth**
- Questions/Comments

- \Box R = 6.5
- \Box C_d = 5
- Dual systems with intermediate moment frames
 - capable of resisting at least 25% of prescribed
 - seismic forces
- □ Special reinforced concrete shear walls
- □ Torsional Irregularity
 - □ Horizontal Irregularity:
 - □ Type 1a: 6th Penthouse
 - \Box Type 1b: 1st 5th
 - \Box Redundancy Factor = 1.3

Fixed Base System

Lateral System Design

□ Response Modification Factor

			Model With Mom	nent Frames			D	eflection C	Criteria Met	?
alls	Frame Size	Period	Maximum Drift X (in.)	Maximum Drift Y (in.)	S-3 Δ _a (1.0%)	$\text{S-1}\Delta_{\!a}(0.5\%)$	S-3 _x	S-3 _Y	S-1 _x	S-1 _Y
Ň	24x24	1.944	1.650	1.316	1.84	0.92	Yes	Yes	No	No
леа	24x28	1.786	1.292	1.199	1.84	0.92	Yes	Yes	No	No
" SI	24x32	1.651	1.038	1.093	1.84	0.92	Yes	Yes	No	No
12	24x36	1.537	0.859	1.001	1.84	0.92	Yes	Yes	Yes	No

Model With Moment Frames								eflection C	Criteria Met	?
16" Shear Walls	Frame Size	Period	Maximum Drift X (in.)	Maximum Drift Y (in.)	S-3 Δ _a (1.0%)	$\text{S-1}\Delta_{\!a}(0.5\%)$	S-3 _X	S-3 _Y	S-1 _x	S-1 _Y
	24x24	1.787	1.480	1.063	1.84	0.92	Yes	Yes	No	No
	24x28	1.660	1.201	0.986	1.84	0.92	Yes	Yes	No	No
	24x32	1.548	0.992	0.915	1.84	0.92	Yes	Yes	No	Yes
	24x36	1.450	0.836	0.851	1.84	0.92	Yes	Yes	Yes	Yes

Model With Moment Frames						De	eflection C	riteria Met	?	
24" Shear Walls	Frame Size	Period	Maximum Drift X (in.)	Maximum Drift Y (in.)	S-3 Δ _a (1.0%)	S-1Δ _a (0.5%)	S-3 _X	S-3 _Y	S-1 _x	S-1 _Y
	24x24	1.564	1.210	0.767	1.84	0.92	Yes	Yes	No	Yes
	24x28	1.475	1.028	0.727	1.84	0.92	Yes	Yes	No	Yes
	24x32	1.393	0.882	0.688	1.84	0.92	Yes	Yes	Yes	Yes
	24x36	1.319	0.766	0.652	1.84	0.92	Yes	Yes	Yes	Yes

- **Building Introduction**
- Existing Structural System
- **Problem Statement**
- **Proposed Solution**
- **Gravity Redesign**
- □ Fixed Base System
- Base Isolation System
- Comparison of Designs
- **Construction Management Breadth**
- Questions/Comments

□ Three basic elements in any particular seismic isolation system:

Base Isolation System

- **Building Introduction**
- **Existing Structural System**
- **Problem Statement**
- **Proposed Solution**
- **Gravity Redesign**
- Fixed Base System
- Base Isolation System
- **Comparison of Designs**
- Construction Management Breadth
- **Questions/Comments**

□ Three basic elements in any particular seismic isolation system:

Base Isolation System

Flexible mounting system so that the period of vibration of the total system is lengthened (reduces force response and acceleration for floor systems)

Basic Properties

- **Building Introduction**
- **Existing Structural System**
- **Problem Statement**
- **Proposed Solution**
- **Gravity Redesign**
- Fixed Base System
- Base Isolation System
- **Comparison of Designs**
- Construction Management Breadth
- **Questions/Comments**

- Flexible mounting system so that the period of vibration of the total system is lengthened (reduces force response and acceleration for floor systems)
- Damper or energy dissipater to decrease deflections and drift

Base Isolation System

□ Three basic elements in any particular seismic isolation system:

Basic Properties

- **Building Introduction**
- **Existing Structural System**
- **Problem Statement**
- **Proposed Solution**
- **Gravity Redesign**
- Fixed Base System
- Base Isolation System
- **Comparison of Designs**
- **Construction Management Breadth**
- **Questions/Comments**

- Flexible mounting system so that the period of vibration of the total system is lengthened (reduces force response and acceleration for floor systems)
- Damper or energy dissipater to decrease deflections and drift
- □ Means of controlling low load levels such as wind (secondary/backup system)

Base Isolation System

□ Three basic elements in any particular seismic isolation system:

Basic Properties

- **Construction Management Breadth**
- **Questions/Comments**

Base Isolation System

□ Base isolators generally attached near the foundation

- □ Isolators placed directly beneath ground floor slab

 - □ Inspect/Maintenance
 - □ Repair damages
 - Distribution of forces

Base Isolation Layout

Building Introduction	De	sign P
Existing Structural System		Hyster
Problem Statement		
Proposed Solution		Prelim
Gravity Redesign		uesigi
Fixed Base System		Isolato
Base Isolation System		Obtair
Comparison of Designs		Reiter
Construction Management Breadth		requir
Questions/Comments		

Base Isolation Design Process

Preliminary Sizing

Process:

- resis curve to obtain characteristics of isolators (could btain one)
- ninary sizing designed assuming an effective period at n displacement and maximum displacement
- or damping properties (roughly 10 20%)
- ned lateral forces for preliminary trial
- rated to obtain drifts adequate for S-1 performance rements

Energy Dissipation Core

Layers of Rubber and Steel

Steel Mounting Plate

Building Introduction	De	sign P
Existing Structural System		Hyster
Problem Statement		
Proposed Solution		Prelim
Gravity Redesign		uesigi
Fixed Base System		Isolato
Base Isolation System		Obtair
Comparison of Designs		Reiter
Construction Management Breadth		requir
Questions/Comments		

Base Isolation Design Process

Process:

- resis curve to obtain characteristics of isolators (could btain one)
- ninary sizing designed assuming an effective period at n displacement and maximum displacement
- or damping properties (roughly 10 20%)
- ned lateral forces for preliminary trial
- rated to obtain drifts adequate for S-1 performance rements

$$\beta_D = \frac{1}{2\pi} \left[\frac{\text{total area of hysteresis loop}}{K_{D,MAX} D^2} \right]$$

$$T_D = 2\pi \sqrt{\frac{W}{k_{D,MIN}g}}$$

$$T_M = 2\pi \sqrt{\frac{W}{k_{M,MIN}g}}$$

$$D_D = \frac{gS_{D1}T_D}{4\pi^2 B_D} \qquad \qquad D_M = 3$$

$$V_b = k_{D,MAX} D_D \qquad V_S = \frac{k}{2}$$

ary Sizing

$$\beta_{M} = \frac{1}{2\pi} \left[\frac{\text{total area of hysteresis loop}}{K_{M,MAX} D^{2}} \right]$$

 $\frac{gS_{M1}T_M}{4\pi^2 B_M}$

 $\frac{k_{D,MAX}D_D}{R_I}$

- **Building Introduction Existing Structural System** Problem Statement **Proposed Solution Gravity Redesign** Fixed Base System □ Base Isolation System **Comparison of Designs** Construction Management Breadth
- **Questions/Comments**

Earthquake Scaling

- □ Earthquake history records were selected and scaled for a nonlinear time history analysis (MAE Incorporation – AE 538)
 - □ Recommendations from FEMA P695
 - □ Scaling was done for the response of the building in Sacramento, CA
 - □ Applied simultaneously in both directions due to torsional irregularity
 - D PEER NGA (Pacific Engineering Earthquake Research)

Normalized Accelerations

- **Building Introduction Existing Structural System Problem Statement Proposed Solution Gravity Redesign** Fixed Base System □ Base Isolation System **Comparison of Designs** Construction Management Breadth
- **Questions/Comments**

Earthquake Scaling

- □ Earthquake history records were selected and scaled for a nonlinear time history analysis (MAE Incorporation – AE 538)
 - □ Recommendations from FEMA P695
 - □ Scaling was done for the response of the building in Sacramento, CA
 - □ Applied simultaneously in both directions due to torsional irregularity
 - D PEER NGA (Pacific Engineering Earthquake Research)

Normalized Accelerations

- Building Introduction
- **Existing Structural System**
- **Problem Statement**
- Proposed Solution
- **Gravity Redesign**
- □ Fixed Base System
- Base Isolation System
- Comparison of Designs
- **Construction Management Breadth**
- Questions/Comments

Base Isolation System

Nonlinear properties modeled in ETABS

	ls	solator Pr	operties			
Vertical Ef	fective	Stiffness	160	00 k/in		
Horizontal	Effecti	ve Striffne	ess 6	k/in		
Nonlinear	Stiffne	SS	60) k/in		
Yield Strei	ngth		37.	5 k		
Post Yield	Stiffnes	ss Ratio	0.1	2		
Effective [Damping	ā	159	%		
El Cen	tro Array	#6 - Maximu	ım Displacen	nents/Drifts		
Level	δ _{χε}	Δ _x s	S-3 Δ _a (1.0%)	S-1 Δ _a (0.5%)	S-3 Met	S-1
enthouse/Roof	25.5	0.7	1.88	0.94	Yes	``
11th	24.8	0.6	1.36	0.68	Yes	Ņ
10th	24.2	0.6	1.36	0.68	Yes	١
9th	23.6	0.6	1.36	0.68	Yes	Ņ
8th	22.9	0.68	1.36	0.68	Yes	١
7th	22.3	0.67	1.36	0.68	Yes	١
6th	21.6	0.68	1.68	0.84	Yes	١
5th	20.9	0.68	1.36	0.68	Yes	١
4th	20.2	0.67	1.36	0.68	Yes	١
3rd	19.6	0.63	1.36	0.68	Yes	١
2nd	18.9	0.8	1.68	0.84	Yes	١
1st	18.1	0.6	1.28	0.64	Yes	١
Ground	17.5	N/A	N/A	N/A	N/A	Ν

Isolator	DES	GN PROPE	Maximum	Axial Load	
Diameter, D _I (in)	Yielded Stiffness, K _d (k/in)	Characteristic Strength, Q _d (kips)	Compression Stiffness, K _v (k/in)	Displacement, D _{max} (in)	Capacity, P _{max} (kips)
12.0	1-5	0-15	>250	6	100
14.0	1-7	0-15	>500	6	150
16.0	2-9	0-25	>500	8	200
18.0	2-11	0-25	>500	10	250
20.5	2-13	0-40	>1,000	12	300
22.5	3-16	0-40	>3,000	14	400
25.5	3-20	0-50	>4,000	16	600
27.5	3-24	0-50	>4,500	18	700
29.5	4-27	0-60	>5,000	18	800
31.5	4-30	0-60	>6,000	20	900
33.5	4-35	0-80	>7,000	22	1,100
35.5	4-35	0-80	>8,000	22	1,300
37.5	4-35	0-110	>10,000	24	1,500
39.5	5-36	0-110	>11,000	26	1,700
41.5	5-36	0-130	>12,000	28	1,900
45.5	6-37	0-150	>16,000	30	3,100
49.5	7-38	0-170	>21,000	32	4,600
53.5	8-40	0-200	>29,000	34	6,200
57.1	9-41	0-230	>30,000	36	7,500
61.0	10-42	0-230	>37,000	36	9,000

- **Building Introduction**
- Existing Structural System
- **Problem Statement**
- **Proposed Solution**
- **Gravity Redesign**
- □ Fixed Base System
- Base Isolation System
- Comparison of Designs
- **Construction Management Breadth**
- Questions/Comments

Base Isolation System

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- □ Gravity Redesign
- Fixed Base System
- □ Base Isolation System

Comparison of Designs

- Construction Management Breadth
- Questions / Comments

Moment Frame Siz Shear Wall Thickne Maximum Drift Val

Comparison of Systems

	Summary of Systems					
	Fixed Base Structure (CA - Fixed Model)	Isolated Structure (CA - Base Isolation Model)				
zes	24" x 36"	24" x 24"				
ess	16"	12"				
lue	0.836 in.	0.8 in.				

Building Introduction □ Isolator Impact **Existing Structural System** \Box D = 45.5" \square Material Costs Per Device = \$16,204 Problem Statement \Box Total Isolation Costs = \$1,070,370 **Proposed Solution Gravity Redesign** □ Difference between CA – Fixed Model and Fixed Base System CA – Base Isolation Model = \$684,300 **Base Isolation System Comparison of Designs** □ Additional Costs

Construction Management Breadth

Questions/Comments

Construction Management

- Seismic Moat Wall
- □ Flexible MEP Connections
- □ Design and Testing/Inspection Costs

Isolator Co	osts	
Base Isolator Costs		
Isolator (45.5") Co	osts:	\$ 972,240
Installation Costs		
1 Crane - 2000lb Co	osts:	\$ 74,250
Labor Costs		
2 Laborers Co	osts:	\$ 15,888
1 Crane Operater Co	osts:	\$ 7,992
		\$ 1,070,370

	Without Location Factor	With Location Factor	Difference With Base Model
Original Structure	\$5,250,302	N/A	-
Fixed Base System	\$5,773,200	\$6,344,747	\$1,094,445
Isolated Structure	\$6,395,851	\$7,029,040	\$1,778,738

- **Building Introduction**
- **Existing Structural System**
- **Problem Statement**
- **Proposed Solution**
- **Gravity Redesign**
- □ **Fixed Base System**
- **Base Isolation System**
- **Comparison of Designs**

Construction Management Breadth

Questions/Comments

- □ Isolator Impact
 - □ Roughly 6 weeks for start of delivery

Construction Management

 \Box 12 – 15 weeks for total project lead time

Original Structure Fixed Base System Isolated Structure

Summary of Durations					
	Duration (Months)				
ructure	15				
System	18				
ructure	19				

- **Building Introduction**
- **Existing Structural System**
- **Problem Statement**
- **Proposed Solution**
- **Gravity Redesign**
- Fixed Base System
- **Base Isolation System**
- **Comparison of Designs**
- **Construction Management Breadth**

□ Questions/Comments

Base isolation is a very efficient method of increasing the performance of the structure

Minimize hospital room operational losses □ Building Enclosure

Conclusions

Cost minimal in comparison to cost of replacing damaged structural components following a significant earthquake

□ Mitigate damage to expensive hospital equipment

Building Introduction	Turne
Existing Structural System	□ Tes
Problem Statement	□ Jan □ Jos
Proposed Solution	-
Gravity Redesign	
Fixed Base System	□ Prc
Base Isolation System	□ Prc
Comparison of Designs	Entire
Construction Management Breadth	isolat

□ Questions/Comments

Acknowledgements

er Construction

- ssa Teodoro
- mes Kelleher
- seph Kranz

e AE Faculty

. Richard Behr ofessor M. Kevin Parfitt ofessor Robert Holland

e AE Student Body (My social life has been ted due to thesis © David Tran)

□ Family and Friends

Questions?